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these techniques for bulb-temperature control and measurement

were found to be responsible for the scatter shown in the lower

curve of [1, fig. 3].

Therefore, a water-cooling system was devised which con-

sisted of a small water jacket surrounding the lamp for about

a 5-cm length in the vicinity of each cathode. The water was

circulated through the jackets and an 8-1 reservoir at a rate of

600 ml/min. The remainder of the bulb was kept warmer than

the “water-cooled portions by thermally insulating it; thus, the

water temperature controlled the mercury vapor pressure within

the lamp.1

MEASURING TECHNIQUES

The noise-temperature measuring technique was basically

the same as in the original study. The lamp was inserted into

three gold-plated copper tubes [1, fig. 2]; the outer two tubes

were grounded and the noise was extracted from the center one

via a double-stub tuner. The tuner was adjusted to give 50 Cl

for each value of discharge current or bulb temperature by

connecting it to an impedance bridge. After the impedance was

adjusted, the noise output was measured by comparison with a

corrected 5722 temperature-limited diode noise source. All

measurements were made at 147 MHz.2

RESULTS

Fig. 1 shows the data obtained from one F8T5 lamp operated

at 160-mA dc as the bulb temperature was varied from 70 to O“C.

One hundred and eight readings were taken in two separate runs

several days apart. The standard deviation of the data is 0.02

dB (0.5 percent).

When compared with the data originally given for normal

lamps [1, fig. 3], [2, fig. 1], the end points given here agree with

the original values, but those for intermediate temperatures

disagree, with the present values being higher. The slope for the

portion from 40 to 70°C is – 0.069 dB/”C instead of – 0,058

dB~C as originally reported.

In the original study, F8T5 and F13T5 lamps appeared to

give the same noise temperature in spite of the different argon

fill pressures so long as the lamps were operating with the normal

amount of mercury. The present study shows a significant

difference between lamp types which was previously hidden in

the scatter. Curves similar to that given in Fig. 1 were obtained

from two other lamps. One of the curves is about 0.1 dB higher

at all temperatures; the other is about 0.05 dB higher. The

variation from lamp to lamp agrees with known variations in the

argon filling pressure.

During the tuning procedure with bulb temperatures between

28 and 70”C, the impedance bridge-detector output was about the

same as with medium-pressure (20–50-mmHg) pure-argon

discharges; i.e., very small impedance fluctuations existed. Below

about 26”C, the detector “nulls” were similar to those from low-

pressure (1-4-mmHg) pure-argon plasmas; i.e., there were large,

random-impedance fluctuations having an average value equiv-

1 Although the coldest spot on the bulb is supposed to control the
mercury-vapor pressure, cataphoretic pumping, or some other effect,
makes it necessary to control the bulb temperdnre at botb ads of the lamp.
Also, the noise temperature was somewhat erratic and low for up to 2 h
after starting; this is believed to be caused by the liberation of adsorbed
mercury from the phosphor in the hotter regions of the lamp.

2 147 MHz was used for the measurements because it is about the highest
frequency at which temperature-limited diodes can be used without large
corrections and the lowest frequency at which plasma sources can be used;
i.e., traditional high-frequeney noise sources and microwave noise sources
can be compared in the upper VHF region.
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Fig. 1. Excess noise in decibels as a function of bulb temperature for a
normal F8T5 lamp, operating at 160-mA dc. EN~~ = 10 logl O(TN -
290)/290, where TN M the noise (eleetron) temperature m kelvms.

alent to about a 4-!2 static-impedance error. The transition

occurred over a small range in bulb temperature, typically from

26 to 28°C for the full change from a low- to a medium-pressure

characteristic. This transition is slightly below the peak in the

curve in Fig. 1, and optimum efficiency as a lamp occurs just

beyond the peak.

CONCLUSION

The noise temperatures obtained from fluorescent lamps are

quite reproducible when the bulb temperature, and thus the

mercury-vapor pressure, is accurately controlled. Above 30”C,

the characteristics are those of a medium-pressure discharge;

the noise temperature is quite sensitive to bulb temperature and

has a linear characteristic with a slope of – 0.069 dB~C. Below

a bulb temperature of 26°C the characteristics are those of a

low-pressure argon discharge, and the noise temperature asym-

ptotically approaches that of the rare-gas filling pressure.

[1]

[2]

[3]

REFERENCES

R. E. Guentzler, “The influence of cataphoresis upon the noise tem-
perature of F8T5 lamps,” IEEE Trans. Microwave Theory and Tech.,
vol. h4TT-18, pp. 393-400, .JuIY 1970.
—, ::Noise temperature data on cataphoretically ptumped F13’T5
lamps, IEEE Trans. Microwave Theory and Tech. (Corresp.), VOI.
MTT-19, pp. 339-341, March 1971.

“Noise temperature data on low pressure argon di~charges,”
IEEh Trans. Electron Devices, vol. ED-19, pp. 160-163, Feb. 1972.

Comments on “Scattering of Surface Waves at a Dielectric

Discontinuity on a Planar Waveguide”

BENJAMIN RULF

An analysis of the problem of scattering of surface waves at a

dielectric discontinuity on a planar waveguide has recently

appeared in this TRANSACTIONS.l

This writer has worked on some very similar prc}blems and

has reached somewhat different conclusions [1], [2]. The object
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of this letter is to compare between the approaches of footnote 1,

[1] and [2], point out some differences, and make some sug-

gestions which may lead towards obtaining better numerical

results.

The authors of footnote 1 transform their equations (7), which

are integral equations, into equations (9), which are then further

transformed into an intinite system of algebraic equations (11).

They achieve this transformation by expanding the two unknown

functions r(~) and T(K) in a series of orthogonal functions

[footnote 1, eq. (8)] appropriate for the domain O < rc < m

which occurs there.

The procedure, and the resulting system of equations (11)

seem to be an obvious generalization of methods used for

analyzing discontinuity problems in closed waveguides. There

is, however, an essential difference between the cases of open

and closed waveguides. In closed waveguides the entire field

may be expressed as a linear combination of modes. Using

orthogonalit y relations, an infinite set of linear algebraic equations

for the mode-excitation coefficients is obtained. Physical con-

siderations suffice to assure us that this set of equations has a

unique solution. We further may accept the solution of a trun-

cated set of equations as a good approximation, knowing that

the mode expansion of the field in a waveguide is a rapidly

convergent Fourier expansion. In open waveguides the field is

expressed as a generalized linear combination of modes, i.e.,

as a finite sum of discrete modes, and an integral over the con-

tinuous spectrum of so-called pseudomodes. The mentioned

functions l_@) and T(K) appear under the integral sign. Even

though we have no doubt that the field representation, and

resulting equations (7), are valid and bounded, there is no

assurance that r and T are bounded for all O s w < m. As a

matter of fact, there are strong indications to the contrary. Our

investigations [1], [2] show that these functions satisfy singular

integral equations, and have singular points for oertain values of

x. Similar observations have been made by others in the in-

vestigation of different (but related) singular integral equations

[3], [4].

Since the integrals over r and T exist, even though r and T

are not necessarily bounded, the expansion of r and Tin series

of orthogonal functions [footnote 1, eq. (8)] is purely formal,

and it may not be valid everywhere. As a result, it is not clear

that the infinite system of algebraic equations(11) has a solution,

or that the solution of a truncated finite subsystem thereof yields

a good approximate solution (in some sense) to the original

boundary-value problem.

Our approach in [1] and [2] is quite similar to footnote 1,

except that we apply the inner product and use the orthogonality

properties of the modes and pseudomodes directly to (7). Using

[footnote 1, eq. (18)] it is readily seen from the terms in the

denominator that the resulting integral equations for R, ~,

l_@), and T(rc) are singular, i.e., they’have a kernel with a Cauchy-

type singularity. We solve these equations asymptotically (for

the case of a small discontinuity, i.e., for h/& << 1), and obtain

the form of the singularities in r and T. We suggest to try to

solve the singular integral equations we get numerically, using

a substitution which is similar to (8), namely,

T(K) = g(~) ~ tjfi(~)
j=lJ

where yJ and ~j are as in [footnote 1, eqs. (8) and (12)]. The

function g(~) should contain the singular parts of r and T.

Such an approach has been used in [4] for the numerical solution

of a different (but related) singular integral equation. We have

reason to believe that such an approach would be useful in our

problem too. The form of g(~) may be found by using the

procedure of [1] and [2].

Reply= by Samir F. Mahmoud3

The problem treated in footnote 1 is that of scattering of a

surface wave at an abrupt dielectric discontinuity on the guiding

structure (Fig. 1). The solution in footnote 1 is based on the

expansion of the electric and magnetic fields on both guides a

and b into their normal modes. These are composed of a finite

number of surface-wave modes plus the radiation field which is

a continuous spectrum of pseudomodes whose normalized

transverse wavenumber w (in the y direction) takes all values

between O and w. It is known that a single pseudocode does not

satisfy the radiation condition since it behaves as the summation

of two plane waves as y ~ co. However, the integrated con-

tinuous spectrum of pseudomodes does satisfy this condition as

it should [5].

The situation in Fig. 1 can be looked at as the excitation of

guide b by an incident surface-wave mode from guide a. Since

the incident fields satisfy the radiation condition, the transmitted

fields on guide b must also satisfy this condition. This requires

that no singularity should exist in the continuous spectrum since

such a singularity, which corresponds to a single pseudocode,

signifies that the total transmitted fields contain a plane wave at

infinity and hence violate the radiation condition. Furthermore

no finite number of such singularities can exist without violating

this condition. However, should the incident fields on guide a

include any singularity in their continuous spectrum, such as the

case of an incident plane wave, we would have expected both

reflected and transmitted plane waves to be excited at the.

discontinuity plane. In such case, the fields on both sides of the

discontinuity would not satisfy the radiation condition.

A mathematical proof of the previous intuitive discussion can

be given as follows. For convenience we shall rewrite [footnote

1, eq. (7)] which expresses the continuity of tangential fields at

z= Oand —t~y <co.

J
co

(1 + R)ela + 17(x)ea(x) dx
o

where the modal fields e and h are functions of the transverse

coordinate y as well as the wavenumber ~. Now, we multiply

the first equation by hb(~’), the second by eb(~’), integrate both

equations w. r. t. y over the range – t s y < co and use the

modal orthogonality relations in footnote 1 to obtain

J
02

(1 + R) (ela,hb(rc’)) + I@) (e”(ic),hb(rc’) ) dk
o

= T(@lVb(~’) (1)

2 Manuscript received January 26, 1976.
3 The author is with the Department of Electrical Engineering, Cairo

Univemity, Cairo, Egypt.
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Fig. 1. Geometry of the problem treated in footnote 1.

J(1 - R)(e’(K’),/r,”) - mr(~) (e~(~’),ha(~) ) dc
o

= Z-(lc’)ivb(lc’) (2)

where (f,g ) is an inner product defined in footnote 1 and in-

volves an integration w . r. t. y. N~ (~’) is given by

2nj?(lc’) P“(K’) Wb(lc’)

where the quantities j?, V, and W are defined by [footnote 1,

eqs. (1)-(3)]. The inner product (ea(rc),l?(rc’) ) is given explicitly

by [footnote 1, eq. (18)]. Here we need only to write it in the

form

<ea(~),hb(~’) )

= Cl(lc’)qlc – K’)

+ (1 – rc2)l/2c&K’)/(K – K’) + fl(lc,rc’). (3)

Similarly,

(e’(~’),h”(~) )

= cl(rc’)d(K – K’)

+ (1 – 7c’2)1/2c2(K,K’)/(K – K’) + f2(lc,rc’) (4)

where 6(. ) is the Kronecker &function, Cl(~’) and Cz(qc’)

“are given by

C,(K’) = 2rc(l – K’z)liz [v”(rC’) Wb(lc’) + W“(K’) J@c’)]

c2(rc,rc’) = – i[v”(lc) W’(K’) – W“(K)F’(K’)]

and fl, &c’) are finite functions which can be obtained from

[footnote 1, eq. (18)]. Now we substitute from (3) and (4) in

(1) and (2) and integrate the singular terms separately to obtain

J(1 + R) (ela,lsb(~’) ) + c(~’)r(~’) + o r(~)F1(#), dx
o

= T(lc’)N’(K’) (5)

J(1 – ~)(eb(d),h~a) – C(K’)r(JC’) - m r(K)~2(K,iCr) dK

o

= T(K’)iVb(K’) (6)

where

C(rc’) = Cl(K’) + 2ziR&)

and R,(@r(#) is the residue resulting from the integration of

the term including l/(~ – d) around the singularity ~ = ~’

after the appropriate modification of the contour of integration.

The functions F1 ,z(ic,~’) represent the terms in (3) and (4) other

than the singularities; i.e., they are finite for all values of ~ and

rd. Furthermore, F1 ,Z(rc,rc’) behave as rc- 1 as ~ ~ m with #

finite as can be proved from [footnote 1, eq. (18)]. From the

radiation condition it can be easily shown that r(rc) tapers off as

rc- 112 or faster as ~ + m. Hence, the integrals in (5) and (6)

are finite. The first terms on the LHS of these equations are also

finite by virtue of the exponential decay of the surface-wave

fields. Hence (5) and (6) can be cast in the forms

iVb(~’)T(rc’) = c(d)r(~’) + a finite quantity XL(K’)

Nb(#)T(#) = – c(~’)r(~’) + a finite quantity X2(X’).

By adding and subtracting these two equations, we conclude

that both T(~’) and 17(~’) are fmite4 quantities for all :finite values

of rc’. We should note, however, that at IC’ = 1, (6) becomes

identically zero and no definite conclusion can be made about the

finiteness of r(l) and T(l). We may then resort to the radiation

condition which necessitates the finiteness of these quantities.

The previous discussion, we believe, constitutes a proof of the

absence of any singularity in the continuous spectra of the fields

on both sides of the discontinuity y, and hence the eligibility of

expanding r(~) and T(K) in terms of Laguerre polynomials as

used in footnote 1.
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Comments on “Asymmetric Coupled Transmission Lines in

an Inhomogeneous Medium”

EUGENIO COSTAMAGNA AND UGO MALTESE

In the above paper,l the terminal characteristic parameters

for a uniform coupled-line four-port for the general case of an

asymmetric, inhomogeneous system are derived, and some of

the equivalent circuits are presented.

We have read with interest the paper, in particular the dis-

cussions on the behavior of the modes of the structure.

An alternative method for expressing the propagation constants

amj the terminal parameters is the use of the capacitances in air

and in inhomogeneous dielectric for odd and even excitation.

This is very useful in the analysis and optimization of distributed

networks. Formulas and procedures have been given in [1] with

equivalent circuits for comb line and interdigital sections.
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