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these techniques for bulb-temperature control and measurement
were found to be responsible for the scatter shown in the lower
curve of [1, fig. 3].

Therefore, a water-cooling system was devised which con-
sisted of a small water jacket surrounding the lamp for about
a 5-cm length in the vicinity of each cathode. The water was
circulated through the jackets and an 8-l reservoir at a rate of
600 mi/min. The remainder of the bulb was kept warmer than
the water-cooled portions by thermally insulating it; thus, the
water temperature controlled the mercury vapor pressure within
the lamp.!

MEASURING TECHNIQUES

The noise-temperature measuring technique was basically
the same as in the original study. The lamp was inserted into
three gold-plated copper tubes [1, fig. 2]; the outer two tubes
were grounded and the noise was extracted from the center one
via a double-stub tuner. The tuner was adjusted to give 50 Q
for each value of discharge current or bulb temperature by
connecting it to an impedance bridge. After the impedance was
adjusted, the noise output was measured by comparison with a
corrected 5722 temperature-limited diode noise source. All
measurements were made at 147 MHz.2

REsuLts
Fig. 1 shows the data obtained from one F8T5 lamp operated

at 160-mA dc as the bulb temperature was varied from 70 to 0°C. -

One hundred and eight readings were taken in two separate runs
several days apart. The standard deviation of the data is 0.02
dB (0.5 percent).

When compared with the data originally given for normal
lamps [1, fig. 31, [2, fig. 1], the end points given here agree with
the original values, but those for intermediate temperatures
disagree, with the present values being higher. The slope for the
portion from 40 to 70°C is —0.069 dB/°C instead of —0.058
dB/°C as originally reported.

In the original study, F8TS5 and F13T5 lamps appeared to
give the same noise temperature in spite of the different argon
fill pressures so long as the lamps were operating with the normal
amount of mercury. The present study shows a significant
difference between lamp types which was previously hidden in
the scatter. Curves similar to that given in Fig. 1 were obtained
from two other lamps. One of the curves is about 0.1 dB higher
at all temperatures; the other is about 0.05 dB higher. The
variation from lamp to lamp agrees with known variations in the
argon filling pressure.

During the tuning procedure with bulb temperatures between
28 and 70°C, the impedance bridge-detector output was about the
same as with medium-pressure (20-50-mmHg) pure-argon
discharges; i.e., very small impedance fluctuations existed. Below
about 26°C, the detector ““nulls” were similar to those from low-
pressure (1-4-mmHg) pure-argon plasmas; i.e., there were large,
random-impedance fluctuations having an average value equiv-

! Although the coldest spot on the bulb is supposed to control the
mercury-vapor pressure, cataphoretic pumping, or some other effect,
makes it necessary to control the bulb temperature at both ends of the lamp.
Also, the noise temperature was somewhat erratic and low for up to 2 h
after starting; this is believed to be caused by the liberation of adsorbed
mercury from the phosphor in the hotter regions of the lamp.

2 147 MHz was used for the measurements because it is about the highest
frequency at which temperature~limited diodes can be used without Jarge
corrections and the lowest frequency at which plasma sources can be used;
i.e., traditional high-frequency noise sources and microwave noise sources
can be compared in the upper VHF region.
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Fig. 1. Excess noise in decibels as a function of bulb temperature for a
normal F8T5 lamp operating at 160-mA dc. ENgg = 10 log;o(Ty ~
290)/290, where Ty is the noise (electron) temperature in kelvins.

alent to about a 4-Q static-impedance error. The transition
occurred over a small range in bulb temperature, typically from
26 to 28°C for the full change from a low- to a medium-pressure
characteristic. This transition is slightly below the peak in the
curve in Fig. 1, and optimum efficiency as a lamp occurs just
beyond the peak.

CONCLUSION

The noise temperatures obtained from fluorescent lamps are
quite reproducible when the bulb temperature, and thus the
mercury-vapor pressure, is accurately controlled. Above 30°C,
the characteristics are those of a medium-pressure discharge;
the noise temperature is quite sensitive to bulb temperature and
has a linear characteristic with a slope of —0.069 dB/°C. Below
a bulb temperature of 26°C the characteristics are those of a
low-pressure argon discharge, and the noise temperature asym-
ptotically approaches that of the rare-gas filling pressure.
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Comments on “Scattering of Surface Waves at a Dielectric
Discontinuity on a Planar Waveguide”

BENJAMIN RULF

An analysis of the problem of scattering of surface waves at a
dielectric discontinuity on a- planar waveguide has recently
appeared in this TRANSACTIONS.

This writer has worked on some very similar problems and
has reached somewhat different conclusions [1], [2]. The object
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of this letter is to compare between the approaches of footnote 1,
[1] and [2], point out some differences, and make some sug-
gestions which may lead towards obtaining better numerical
results.

The authors of footnote 1 transform their equations (7), which
are integral equations, into equations (9), which are then further
transformed into an infinite system of algebraic equations (11).
They achieve this transformation by expanding the two unknown
functions I'(x) and T(x) in a series of orthogonal functions
[footnote 1, eq. (8)] appropriate for the domain 0 < x <
which occurs there.

The procedure, and the resulting system of equations (11)
seem to be an obvious generalization of methods used for
analyzing discontinuity problems in closed waveguides. There
is, however, an essential difference between the cases of open
and closed waveguides. In closed waveguides the entire field
may be expressed as a linear combination of modes. Using
orthogonality relations, an infinite set of linear algebraic equations
for the mode-excitation coefficients is obtained. Physical con-
siderations suffice to assure us that this set of equations has a
unique solution. We further may accept the solution of a trun-
- cated set of equations as a good approximation, knowing that
the mode expansion of the field in a waveguide is a rapidly
convergent Fourier expansion. In open waveguides the field is
expressed as a generalized linear combination of modes, i.e.,
as a finite sum of discrete modes, and an integral over the con-
tinuous spectrum of so-called pseudomodes. The mentioned
functions I'(x) and T'(x) appear under the integral sign. Even
though we have no doubt that the field representation, and
resulting equations (7), are valid and bounded, there is no
assurance that I’ and 7 are bounded for all 0 < k¥ < 0. As a
matter of fact, there are strong indications to the contrary. Our
investigations [1], [2] show that these functions satisfy singular
integral equations, and have singular points for certain values of
x. Similar observations have been made by others in the in-
vestigation of different (but related) singular integral equations
[3], [4]. ‘

Since the integrals over I' and T exist, even though I" and T
are not necessarily bounded, the expansion of I" and 7 in series
of orthogonal functions [footnote 1, eq. (8)] is purely formal,
and it may not be valid everywhere. As a result, it is not clear
that the infinite system of algebraic equations (11) has a solution,
or that the solution of a truncated finite subsystem thereof yields
a good approximate solution (in some sense) to the original
boundary-value problem,

Our approach in [1] and [2] is quite similar to footnote 1,
except that we apply the inner product and use the orthogonality
properties of the modes and pseudomodes directly to (7). Using
[footnote 1, eq. (18)] it is readily seen from the terms in the
denominator that the resulting integral equations for R, Tj,
I'(x), and T'(x) are singular, i.e., they' have a kernel with a Cauchy-
type singularity. We solve these equations asymptotically (for
the case of a small discontinuity, i.e., for A/Ay « 1), and obtain
the form of the singularities in I' and 7. We suggest to try to
solve the singular integral equations we get numerically, using
a substitution which is similar to (8), namely,

8

I'(x) = g(x)

J

7jfj(’€)
0

1l

8

T() = g(x) . t;f(x)

J

where y; and f; are as in [footnote 1, egs. (8) and (12)]. The
function g(x) should contain the singular parts of I" and T.
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Such an approach has been used in [4] for the numerical solution
of a different (but related) singular integral equation. We have
reason to believe that such an approach would be useful in our
problem too. The form of g(x) may be found by using the
procedure of [1] and [2].

Reply? by Samir F. Mahmoud?

The problem treated in footnote 1 is that of scattering of a
surface wave at an abrupt dielectric discontinuity on the guiding
structure (Fig. 1). The solution in footnote 1 is based on the
expansion of the electric and magnetic fields on both guides a
and b into their normal modes. These are composed of a finite
number of surface-wave modes plus the radiation field which is
a continuous spectrum of pseudomodes whose normalized
transverse wavenumber x (in the y direction) takes all values
between 0 and oo, It is known that a single pseudomode does not
satisfy the radiation condition since it behaves as the summation
of two plane waves as y — oo. However, the integrated con-
tinuous spectrum of pseudomodes does satisfy this condition as
it should [5].

The situation in Fig. 1 can be looked at as the excitation of
guide b by an incident surface-wave mode from guide «. Since
the incident fields satisfy the radiation condition, the transmitted
fields on guide & must also satisfy this condition. This requires
that no singularity should exist in the continuous spectrum since
such a singularity, which corresponds to a single pseudomode,
signifies that the total transmitted fields contain a plane wave at
infinity and hence violate the radiation condition. Furthermore
no finite number of such singularities can exist without violating
this condition. However, should the incident fields on guide a
include any singularity in their continuous spectrum, such as the
case of an incident plane wave, we would have expected both
reflected and transmitted plane waves to be excited at the.
discontinuity plane. In such case, the fields on both sides of the
discontinuity would not satisfy the radiation condition.

A mathematical proof of the previous intuitive discussion can
be given as follows. For convenience we shall rewrite [footnote
1, eq. (7)] which expresses the continuity of tangential fields at
z=0and —t <y < o0.

(1 + R)e,” + on I'(x)e' (k) dr
0

Ms -]
=N e+ f TGOS (k) dic
i=1

o

1 - R — on ()W (k) dic

0

0

Ms =<
=¥ 7ar + f T TGOR G die
i=1

where the modal fields e and & are functions of the transverse
coordinate y as well as the wavenumber x. Now, we multiply
the first equation by A°(x”), the second by €®(x’), integrate both -
equations w-r - f-y over the range —f < y < o0 and use the
modal orthogonality relations in footnote 1 to obtain

(1 + R B (Y + f ® TG0, B )y dk

V]
= T()N"(x) (1)
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Fig. 1. Geometry of the problem treated in footnote 1.

(1 — RN, hy) — f ® T (), 1) Y dic

0
= T(x)N*(x) (2)
where (f,g) is an inner product defined in footnote 1 and in-
volves an integration w-r-¢-y - N, (k') is given by
27k YV (kYW P(K")
where the quantities f, ¥, and W are defined by [footnote 1,
egs. (1)~(3)]. The inner product {e%(x),h%(x")) is given explicitly

by [footnote 1, eq. (18)]. Here we need only to write it in the
form

(1), (k"))
= C1()3e — )
+ (U = &)PCyrex) (ke — k) + filkx).  (3)
Similarly,
("), 1) )
= Ci()d(k — K)
+ 1 = &HY 2Cea)(x = k) + frlkx) (@)
where d(-) is the Kronecker d-function, C{(x’) and C,(x,x’)
-are given by
Ci(x) = 2a(l — &DHV2[VU)WP(K) + WK)IV()]
Colri) = —i[VARW(K') — Wx)V(x)]
and f, ,(x,x’) are finite functions which can be obtained from

[footnote 1, eq. (18)]. Now we substitute from (3) and (4) in
(1) and (2) and integrate the singular terms separately to obtain

A + R)e, " 1(x")) + C(TG') + f ) L) Fy(re,x"). dic

0
= T()N°(x) (5)

(1 — RUSW Ay — CUHT() — f " TGO Fy ) di
0
= TGN ) (6)
where
C) = C,(x') + 2miR(K')

and R(x)I'(x) is the residue resulting from the integration of
the term including 1/(x — x’) around the singularity x = «’
after the appropriate modification of the contour of integration.
The functions F; ,(x,x’) represent the terms in (3) and (4) other
than the singularities; i.c., they are finite for all values of ¥ and
x’. Furthermore, F, ,(x,x’) behave as x~! as k¥ —» oo with «’
finite as can be proved from [footnote 1, eq. (18)]. From the
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radiation condition it can be easily shown that ['(x) tapers off as
xk~12 or faster as k — co. Hence, the integrals in (5) and (6)
are finite. The first terms on the LHS of these equations are also
finite by virtue of the exponential decay of the surface-wave
fields. Hence (5) and (6) can be cast in the forms

NPGHT() = CxH(x’) + a finite quantity X, (k")
NPTk = — C(k)T(x’) + a finite quantity X,(x").

By adding and subtracting these two equations, we conclude
that both T(x") and I'(x’) are finite* quantities for all finite values
of x¥’. We should note, however, that at ¥” = 1, (6) becomes
identically zero and no definite conclusion can be made about the
finiteness of I'(1) and 7'(1). We may then resort to the radiation
condition which necessitates the finiteness of these quantities.

The previous discussion, we believe, constitutes a proof of the
absence of any singularity in the continuous spectra of the fields
on both sides of the discontinuity, and hence the eligibility of
expanding I'(x) and 7T'(x) in terms of Laguerre polynomials as
used in footnote 1.
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Comments on “Asymmetric Coupled Transmission Lines in
an Inhomogeneous Medium”

EUGENIO COSTAMAGNA ano UGO MALTESE

In the above paper,! the terminal characteristic parameters
for a uniform coupled-line four-port for the general case of an
asymmetric, inhomogeneous system are derived, and some of
the equivalent circuits are presented.

We have read with interest the paper, in particular the dis-
cussions on the behavior of the modes of the structure.

An alternative method for expressing the propagation constants
and the terminal parameters is the use of the capacitances in air
and in inhomogencous dielectric for odd and even excitation.
This is very useful in the analysis and optimization of distributed
networks. Formulas and procedures have been given in {1] with
equivalent circuits for comb line and interdigital sections.
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